Abstract

When a system's parameter is abruptly changed, a relaxation toward the new equilibrium of the system follows. We show that a crossing between the second and third eigenvalues of the relaxation operator results in a singularity in the dynamics analogous to a first-order equilibrium phase transition. While dynamical phase transitions are intrinsically hard to detect in nature, here we show how this kind of transition can be observed in an experimentally feasible four-state colloidal system. Finally, analytical proof of survival in the thermodynamic limit of a many body (1D Ising) model is provided.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.