Abstract

Applying multi-objective particle swarm optimization (MOPSO) algorithm to multi-objective design of multimachine power system stabilizers (PSSs) is presented in this paper. The proposed approach is based on MOPSO algorithm to search for optimal parameter settings of PSS for a wide range of operating conditions. Moreover, a fuzzy set theory is developed to extract the best compromise solution. The stabilizers are selected using MOPSO to shift the lightly damped and undamped electromechanical modes to a prescribed zone in the s-plane. The problem of tuning the stabilizer parameters is converted to an optimization problem with eigenvalue-based multi-objective function. The performance of the proposed approach is investigated for a three-machine nine-bus system under different operating conditions. The effectiveness of the proposed approach in damping the electromechanical modes and enhancing greatly the dynamic stability is confirmed through eigenvalue analysis, nonlinear simulation results and some performance indices over a wide range of loading conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.