Abstract
We present an eigensystem multiscale analysis for proving localization (pure point spectrumwith exponentially decaying eigenfunctions, dynamical localization) for the Anderson model in an energy interval. In particular, it yields localization for the Anderson model in a nonempty interval at the bottom of the spectrum. This eigensystem multiscale analysis in an energy interval treats all energies of the finite volume operator at the same time, establishing level spacing and localization of eigenfunctions with eigenvalues in the energy interval in a fixed box with high probability. In contrast to the usual strategy, we do not study finite volume Green’s functions. Instead, we perform a multiscale analysis based on finite volume eigensystems (eigenvalues and eigenfunctions). In any given scale we only have decay for eigenfunctions with eigenvalues in the energy interval, and no information about the other eigenfunctions. For this reason, going to a larger scale requires new arguments that were not necessary in our previous eigensystem multiscale analysis for the Anderson model at high disorder, where in a given scale we have decay for all eigenfunctions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.