Abstract
In estimating the variogram of a spatial stochastic process, we use a spatial design matrix. This matrix is the key to Matheron's variogram estimator. We show how the structure of the matrix for any dimension is based on the one-dimensional spatial design matrix, and we compute explicit eigenvalues and eigenvectors for all dimensions. This design matrix involves Kronecker products of second order finite difference matrices, with cosine eigenvectors and eigenvalues. Using the eigenvalues of the spatial design matrix, the statistics of Matheron's variogram estimator are determined. Finally, a small simulation study is performed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.