Abstract
Quantum thermalization is well understood via the eigenstate thermalization hypothesis (ETH). The general form of ETH, describing all the relevant correlations of matrix elements, may be derived on the basis of a "typicality" argument of invariance with respect to local rotations involving nearby energy levels. In this Letter, we uncover the close relation between this perspective on ETH and free probability theory, as applied to a thermal ensemble or an energy shell. This mathematical framework allows one to reduce in a straightforward way higher-order correlation functions to a decomposition given by minimal blocks, identified as free cumulants, for which we give an explicit formula. This perspective naturally incorporates the consistency property that local functions of ETH operators also satisfy ETH. The present results uncover a direct connection between the eigenstate thermalization hypothesis and the structure of free probability, widening considerably the latter's scope and highlighting its relevance to quantum thermalization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.