Abstract

The eigenstate thermalization hypothesis (ETH) explains why nonintegrable quantum many-body systems thermalize internally if the Hamiltonian lacks symmetries. If the Hamiltonian conserves one quantity ("charge"), the ETH implies thermalization within a charge sector-in a microcanonical subspace. But quantum systems can have charges that fail to commute with each other and so share no eigenbasis; microcanonical subspaces may not exist. Furthermore, the Hamiltonian will have degeneracies, so the ETH need not imply thermalization. We adapt the ETH to noncommuting charges by positing a non-Abelian ETH and invoking the approximate microcanonical subspace introduced in quantum thermodynamics. Illustrating with SU(2) symmetry, we apply the non-Abelian ETH in calculating local operators' time-averaged and thermal expectation values. In many cases, we prove, the time average thermalizes. However, we find cases in which, under a physically reasonable assumption, the time average converges to the thermal average unusually slowly as a function of the global-system size. This work extends the ETH, a cornerstone of many-body physics, to noncommuting charges, recently a subject of intense activity in quantum thermodynamics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.