Abstract
This paper presents an efficient reduced-order modelling approach to predict unsteady behaviour of partial cavity flows (PCROM). The boundary element method (BEM) along with the potential flow is used to analyze unsteady partial cavity flows. Partial cavity flow is modelled based on a new non-iterative approach and the PCROM is based on fluid eigenmodes. To construct fluid eigenmodes the spatial iterative scheme to find cavity extent is removed. The eigenvalue problem of the unsteady flows is defined based on the unknown wake singularities. Eigenanalysis and reduced-order modelling of unsteady flows over a NACA 16-006 section are performed using the PCROM. Numerical examples are presented to demonstrate the accuracy of the proposed method. Comparison between the obtained results of the proposed method and those of other and conventional method indicates that the present algorithm works well with sufficient accuracy. Moreover, it is shown that the PCROM is computationally more efficient than the conventional one for unsteady sheet cavitations analysis on hydrofoils.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.