Abstract

This paper investigates the disturbance rejection for a modified repetitive control system (MRCS) that is described by a class of linear singular systems in the presence of external disturbances and time-varying delay. In particular, an equivalent-input-disturbance (EID)-based estimator is included in the MRCS to compensate both periodic and aperiodic disturbances which yields an EID-based MRCS. More precisely, the incorporation of the EID-based estimator into the control input enables rejection of all types of disturbances in MRCS and tracking of a periodic reference input is archived via a repetitive controller. Attention is focused on the state-feedback repetitive controller design which not only guarantees the regular, impulse free, and asymptotic stability of the closed-loop singular MRCS, but also provides an optimized upper bound of the time-varying delay. Based on Lyapunov stability theory and utilizing some advanced mathematical techniques, a new set of delay-dependent sufficient conditions is presented in terms of linear matrix inequalities for obtaining the required result. Then, an explicit expression for the desired state-feedback repetitive control law is developed. Further, the obtained results are validated through two numerical examples in the simulation section.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call