Abstract

This study concerns disturbance rejection for a modified repetitive control system (MRCS) that contains a strictly proper plant with time-varying uncertainties. Since an MRCS is affected by both periodic and aperiodic disturbances, and since the disturbances are often unknown, an equivalent-input-disturbance (EID)-based estimator was added to an MRCS to yield an EID-based MRCS that compensates for all types of disturbances. In this system, the repetitive controller ensures tracking of a periodic reference input, and the incorporation of an EID estimate into the control input enables rejection of unknown periodic and aperiodic disturbances. A robust stability condition for the MRCS was established in the form of a linear matrix inequality, and the condition was used to design the parameters of the controller. This design method handles uncertainties and enables the preferential adjustment of the tracking and control performance of the MRCS. Simulation results demonstrate the validity of the method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.