Abstract

The effects of eicosapentaenoic acid on synthesis and secretion of cholesterol and cholesterol ester by cultured rat hepatocytes were studied. In the presence of eicosapentaenoic acid cellular cholesterol esterification was decreased by 50-75% compared to oleic acid as measured by radioactive precursors and mass. Secretion of cholesterol ester was reduced by 50-60% in the presence of eicosapentaenoic acid as evaluated by radiolabeled fatty acids, mevalonolactone, and mass measurement. Oleic, palmitic, and stearic acid increased, whereas eicosapentaenoic and docosahexaenoic acid decreased synthesis and secretion of cholesterol ester as compared to a fatty acid-free control. Cellular and secreted free cholesterol were unaffected by eicosapentaenoic acid in comparison with oleic acid. The reduced cholesterol esterification was observed within 1 h and lasted for at least 20 h. Eicosapentaenoic acid caused lower cholesterol esterification than oleic acid in the concentration range 0.2-1.0 mM fatty acid and reduced the stimulatory effect of oleic acid on cholesterol ester formation. Cholesterol esterification and release of cholesterol ester were markedly increased by 25-hydroxycholesterol in the presence of eicosapentaenoic acid as well as oleic acid. Experiments with liver microsomes revealed that radioactive eicosapentaenoic acid and eicosapentaenoyl-CoA were poorer substrates (7-30%) for cholesterol esterification than oleic acid and oleoyl-CoA. Reduced formation of cholesterol ester was also observed when eicosapentaenoyl-CoA was given together with labeled oleoyl-CoA, whereas palmitoyl-CoA, stearoyl-CoA, linolenoyl-CoA, and arachidonoyl-CoA had no inhibitory effect. In conclusion, eicosapentaenoic acid reduced cellular cholesterol esterification by inhibiting the activity of acyl-CoA:cholesterol acyltransferase. The lowered cholesterol esterification caused by eicosapentaenoic acid secondly decreased secretion of very low density lipoprotein cholesterol ester.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.