Abstract
[abstFig src='/00290001/11.jpg' width='300' text='Ego-noise suppression achieves speech recognition even during motion' ] This paper addresses ego-motion noise suppression for a robot. Many ego-motion noise suppression methods use motion information such as position, velocity, and the acceleration of each joint to infer ego-motion noise. However, such inferences are not reliable, since motion information and ego-motion noise are not always correlated. We propose a new framework for ego-motion noise suppression based on single channel processing using only acoustic signals captured with a microphone. In the proposed framework, ego-motion noise features and their numbers are automatically estimated in advance from an ego-motion noise input using Infinite Non-negative Matrix Factorization (INMF), which is a non-parametric Bayesian model that does not use explicit motion information. After that, the proposed Semi-Blind INMF (SB-INMF) is applied to an input signal that consists of both the target and ego-motion noise signals. Ego-motion noise features, which are obtained with INMF, are used as inputs to the SB-INMF, and are treated as the fixed features for extracting the target signal. Finally, the target signal is extracted with SB-INMF using these newly-estimated features. The proposed framework was applied to ego-motion noise suppression on two types of humanoid robots. Experimental results showed that ego-motion noise was effectively and efficiently suppressed in terms of both signal-to-noise ratio and performance of automatic speech recognition compared to a conventional template-based ego-motion noise suppression method using motion information. Thus, the proposed method worked properly on a robot without a motion information interface.**This work is an extension of our publication “Taiki Tezuka, Takami Yoshida, Kazuhiro Nakadai: Ego-motion noise suppression for robots based on Semi-Blind Infinite Non-negative Matrix Factorization, ICRA 2014, pp.6293-6298, 2014.”
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have