Abstract

Starch has great potential to replace petroleum-based plastics in food packaging applications. However, starch films often exhibit poor mechanical and barrier properties, and are vulnerable to moisture and bacterial contamination. This study proved that the incorporation of eggshell powder (ES) enhanced the hydrogen bonding in starch-based films significantly, which contributed to improved tensile strength, Young's modulus, and water resistance of the films. The performance of ES-incorporated films could be optimized by adjusting the size, concentration, and surface property of ES in the film matrix. Notably, adsorbing epigallocatechin gallate (EGCG) on the surface of porous ES contributed to enhanced dispersibility of the fillers in the film matrix, which increased the tortuous path of light, water vapor, and oxygen have to take through the films, resulting in increased UV screening performance, water vapor and oxygen barrier property of the films by 60 %, 7.2 %, and 27.9 %, respectively. Meanwhile, loading EGCG in ES also enable superior antibacterial activity of the final films. This study suggests that eggshell fillers offer a sustainable means of improving the functional performance of starch-based films, which may increase their application as packaging materials in the food industry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.