Abstract

Glioblastoma multiforme (GBM) is the most lethal of brain tumors and is highly resistant to ionizing radiation (IR) and chemotherapy. Here, we report on a molecular mechanism by which a key glioma-specific mutation, epidermal growth factor receptor variant III (EGFRvIII), confers radiation resistance. Using Ink4a/Arf-deficient primary mouse astrocytes, primary astrocytes immortalized by p53/Rb suppression, as well as human U87 glioma cells, we show that EGFRvIII expression enhances clonogenic survival following IR. This enhanced radioresistance is due to accelerated repair of DNA double-strand breaks (DSB), the most lethal lesion inflicted by IR. The EGFR inhibitor gefitinib (Iressa) and the phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 attenuate the rate of DSB repair. Importantly, expression of constitutively active, myristylated Akt-1 accelerates repair, implicating the PI3K/Akt-1 pathway in radioresistance. Most notably, EGFRvIII-expressing U87 glioma cells show elevated activation of a key DSB repair enzyme, DNA-dependent protein kinase catalytic subunit (DNA-PKcs). Enhanced radioresistance is abrogated by the DNA-PKcs-specific inhibitor NU7026, and EGFRvIII fails to confer radioresistance in DNA-PKcs-deficient cells. In vivo, orthotopic U87-EGFRvIII-derived tumors display faster rates of DSB repair following whole-brain radiotherapy compared with U87-derived tumors. Consequently, EGFRvIII-expressing tumors are radioresistant and continue to grow following whole-brain radiotherapy with little effect on overall survival. These in vitro and in vivo data support our hypothesis that EGFRvIII expression promotes DNA-PKcs activation and DSB repair, perhaps as a consequence of hyperactivated PI3K/Akt-1 signaling. Taken together, our results raise the possibility that EGFR and/or DNA-PKcs inhibition concurrent with radiation may be an effective therapeutic strategy for radiosensitizing high-grade gliomas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.