Abstract

Tuberculosis (TB) remains an important global public health issue with an approximate prevalence of 10 million people with TB worldwide in 2015. Since antibiotic treatment is one of the foremost tools for TB control, knowledge of Mycobacterium tuberculosis (MTB) drug resistance is an important component for disease control. Although gene mutations in specific loci of the MTB genomes are reported as the primary basis for drug resistance, additional mechanisms conferring resistance to MTB are thought to exist. Efflux is a ubiquitous mechanism responsible for innate and acquired drug resistance in prokaryotic and eukaryotic cells. MTB presents a large number of putative drug efflux pumps compared to its genome size. Bioinformatics-based evidence has shown an association between drug efflux and innate or acquired resistance in MTB. This review describes the recent understanding of drug efflux in MTB.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.