Abstract

Previous approaches for utilizing ATE vector repeat are based on identifying runs of repeated scan data and directly generating that data using ATE vector repeat. Each run requires a separate vector repeat instruction, so the amount of compression is limited by the amount of ATE instruction memory available and the length of the runs (which typically will be much shorter than the length of a scan vector). In this paper a new and more efficient approach is proposed for utilizing ATE vector repeat. The scan vector sequence is partitioned and decomposed into a common sequence which is the same for an entire cluster of test cubes and a unique sequence that is different for each test cube. The common sequence can be generated very efficiently using ATE vector repeat. Experimental results demonstrate that the proposed approach can achieve much greater compression while using many fewer vector repeat instructions compared with previous methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.