Abstract

An engineered Escherichia coli was constructed by co-expressing L-amino acid deaminase, α-keto acid decarboxylase, alcohol dehydrogenase, and glucose dehydrogenase through two plasmids for tyrosol production. The activity of the rate-limiting enzyme L-amino acid deaminase from Cosenzaea myxofaciens (CmAAD) toward tyrosine was improved by structure-guided modification. The enzyme activity of triple mutant CmAAD V438G/K147V/R151E toward tyrosine was ~5.12-fold higher than that of the wild-type CmAAD. Secondly, the plasmid copy numbers and the gene orders were optimized to improve the titer of tyrosol. Finally, the recombinant strain CS-6 transformed 10 mM tyrosine into 9.56 ± 0.64 mM tyrosol at 45 ℃, and the space-time yield reached 0.478 mM·L−1·h−1. This study proposes a novel idea for the efficient and natural production of tyrosol, which has great potential for industrial application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.