Abstract

The recently determined primary structure of glucose dehydrogenase from Bacillus megaterium was scanned by computerized comparisons for similarities with known polyol and alcohol dehydrogenases. The results revealed a highly significant similarity between this glucose dehydrogenase and ribitol dehydrogenase from Klebsiella aerogenes. Sixty-one positions of the 262 in glucose dehydrogenase are identical between these two proteins (23% identity), fitting into a homology alignment for the complete polypeptide chains. The extent of similarity is equivalent to that between other highly divergent but clearly related dehydrogenases (two zinc-containing alcohol dehydrogenases, 25% sorbitol and zinc-containing alcohol dehydrogenases, 25%; ribitol and non-zinc-containing alcohol dehydrogenases, 20%), and suggests an ancestral relationship between glucose and ribitol dehydrogenases from different bactera. The similarities fit into a previously suggested evolutionary scheme comprising short and long alcohol and polyol dehydrogenases, and greatly extend the former group to one composed of non-zinc-containing alcohol-polyol-glucose dehydrogenases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call