Abstract
The description of large state spaces through stochastic structured modeling formalisms like stochastic Petri nets, stochastic automata networks and performance evaluation process algebra usually represent the infinitesimal generator of the underlying Markov chain as a Kronecker descriptor instead of a single large sparse matrix. The best known algorithms used to compute iterative solutions of such structured models are: the pure sparse solution approach, an algorithm that can be very time efficient, and almost always memory prohibitive; the Shuffle algorithm which performs the product of a descriptor by a probability vector with a very impressive memory efficiency; and a newer option that offers a trade-off between time and memory savings, the Split algorithm. This paper presents a comparison of these algorithms solving some examples of structured Kronecker represented models in order to numerically illustrate the gains achieved considering each model's characteristics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.