Abstract

The response of periodic systems to external electric fields is a challenging theoretical problem. The authors show how the vector potential approach yields a numerically efficient treatment of the combined electronic and nuclear response to a finite static field. Their method is based on a self-consistent reformulation of the charge flow term in the single particle Hamiltonian. Careful numerical implementation yields a treatment whose computational needs are only marginally larger than those of a conventional field-free calculation. To prove the method exemplary polymer calculations are done for a model Hamiltonian. The latter contains all essential elements of an ab initio Kohn-Sham or Hartree-Fock Hamiltonian but allows for extensive testing. The extension to three-dimensional systems is described.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call