Abstract

In the deep sub-micron ICs, growing amounts of on-die memory and scaling effects make embedded memories increasingly vulnerable to reliability and yield problems. Spare columns are often included in memories to repair defective cells or bit lines during production test. In many cases, the repair process will not use all spare columns. Schemes have been proposed to exploit these unused spare columns to store additional check bits which can be used to reduce the miscorrection probability for triple errors in single error correction - double error detection (SEC-DED). These additional check bits increase the dimensions of the parity check matrix (H-matrix) requiring extra area and delay overhead. A method is proposed in this paper to efficiently fill the extra rows of the H-matrix on the basis of similarity of logic between the other rows. Optimization of the whole H-matrix is accomplished through logic sharing within a feasible operating time resulting in the reduced area and delay overhead.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.