Abstract

Using leakage-radiation microscopy, we characterize the efficiency of unidirectional surface-plasmon excitation with periodic (800 nm) arrays of 130-nm-high and 330-nm-wide gold ridges on a thin gold film illuminated with a focused (5-microm-wide) laser beam. We demonstrate that, at the resonant wavelength of 816 nm, the excitation efficiency of > 0.4 can be obtained with >or= 5 ridges by adjusting the beam position. Conducting numerical simulations, we account for the experimental results and calculate the electric-field enhancement achieved near the gold surface.

Highlights

  • Using leakage-radiation microscopy, we characterize the efficiency of unidirectional surface-plasmon excitation with periodic (800 nm) arrays of 130-nm-high and 330-nm-wide gold ridges on a thin gold film illuminated with a focused (5-μm-wide) laser beam

  • At the resonant wavelength of 816 nm, the excitation efficiency of > 0.4 can be obtained with ≥ 5 ridges by adjusting the beam position

  • Conducting numerical simulations, we account for the experimental results and calculate the electric-field enhancement achieved near the gold surface

Read more

Summary

Introduction

Using leakage-radiation microscopy, we characterize the efficiency of unidirectional surface-plasmon excitation with periodic (800 nm) arrays of 130-nm-high and 330-nm-wide gold ridges on a thin gold film illuminated with a focused (5-μm-wide) laser beam.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.