Abstract

Porous carbons (PCS) derived from sodium lignin sulfonate were activated by four common metal salts. The samples exhibit distinct characteristics of irregular, sunflower-like, interconnected sheet, and tine block morphologies under the impact of NaCl, CaCl2, ZnCl2, and FeCl3, respectively (PCS-MClx). Surprisingly, the maximum and minimum specific surface areas are 1524 and 44 m2/g corresponding to PCS-ZnCl2 and PCS-NaCl. All of the samples have plentiful functional groups; herein, PCS-NaCl and PCS-FeCl3 are detected with the highest O and S contents (11.85, 1.08%), respectively, which signifies sufficient active sites for adsorption. These porous materials were applied in toluene adsorption from paraffin liquid and matched the Langmuir isotherm models well. Thus, the activation mechanism was discussed in detail. PCS-MClx has a completely different pyrolysis behavior according to thermogravimetry/derivative thermogravimetry (TG/DTG) analysis. It is speculated that H[ZnCl2(OH)] would have an etching effect on the carbon structure of PCS-ZnCl2, and HCl or H2SO4, resulting from FeCl3 hydrolysis and a reduction reaction, would be corrosive to the sodium lignin sulfonate (SLS) surface. Each metal salt plays a different role in activation. The devised method for the synthesis of porous carbons is green and economical, which is suited to mass production.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.