Abstract

The porous carbon materials formed from biomass precursors are promising candidates for adsorbing organic vapor pollutants. However, these materials have insufficient pores, which hinder their accessibility to adsorbates. This study develops an ultrahigh-surface-area porous carbon adsorbent with interlacing micro-mesoporous structures through Trichoderma viride decomposition. An orthogonal experiment is conducted, and the most suitable conditions for fabricating porous carbon with an ultrahigh SBET of 3714 m2.g−1 and a hierarchical porous structure are identified. This work achieves one of the highest specific surface areas of biomass carbons among recent studies. T. viride corrodes the internal and external microstructures of rice husks, and regulates the lignin, cellulose, and hemicellulose contents, which improve the efficiency of carbonization and chemical activation. The carbonaceous materials with microbial pretreatment exhibit better toluene adsorption performances (100 ppm: 708 mg.g−1), adsorption rates, and cyclic utilization than those without pretreatment (100 pm: 538 mg.g−1). In addition, grand canonical Monte Carlo simulation is conducted. The micropores and mesopores created after microbial pretreatment are effective toluene adsorption sites. Moreover, the diffusion coefficient calculated by utilizing Thomas model and Chemical diffusion verify that the mesopores accelerate the kinetic process of toluene adsorption.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call