Abstract
In vechcular networks, a promising approach to enhance vehicle task processing capabilities involves using a combination of roadside base stations or vehicles, there are two challenges when integrating the two offloading modeth: 1) the high mobility of vehicles can easily lead to connectivity interruptions between nodes, which in turn affects the processing of the tasks that are being offloaded; and 2) vehicles on the road are not completely trustworthy, and vehicle tasks that contain private information may suffer from result errors or privacy leakage and other problems. This paper investigates the computing offloading problem for minimizing task completion delay in vehicular networks. Specifically, we design a trust model for mobile in-vehicle networks and construct a migration decision problem to minimize the overall delay of task execution for all vehicle users. The simulation results show that the scheme proposed in this paper can effectively reduce the execution delay of the task compared to the baseline scheme.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Digital Crime and Forensics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.