Abstract

Although first-order reliability method is a common procedure for estimating failure probability, the formulas derived for bimodal bounds of system failure probability have not been widely used as expected in present reliability analyses. The reluctance for applying these formulas in practice may be partly due to the impression that the procedures to implement the system reliability theory are tedious. Among the methods for system reliability analysis, the approach suggested in Ditlevsen 1979 is considered here because it is a natural extension of the first-order reliability method commonly used for failure probability estimation corresponding to a single failure mode, and it can often provide reasonably narrow failure probability bounds. To facilitate wider practical application, this paper provides a short program code in the ubiquitous Excel spreadsheet platform for efficiently calculating the bounds for system failure probability. The procedure is illustrated for a semi-gravity retaining wall with two failure modes, a soil slope with two and eight failure modes, and a loaded beam with three failure modes. In addition, simple equations are provided to relate the correlated but unrotated equivalent standard normals of the Low and Tang 2007 FORM procedure with the uncorrelated but rotated equivalent standard normals of the classical FORM procedure. Also demonstrated are the need for investigating different permutations of failure modes in order to get the narrowest bounds for system failure probability, and the use of SORM reliability index for system reliability bounds in a case where the curvature of the limit state surface cannot be neglected.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call