Abstract

This study proposes a system reliability analysis of rack storage facilities subjected to forklift colliding events. The proposed system reliability analysis consists of two steps: the first step is to identify dominant failure modes that most contribute to the failure of the whole rack facilities, and the second step is to evaluate the system failure probability. In the first step, dominant failure modes are identified by using a simulation-based selective searching technique where the contribution of a failure mode to the system failure is roughly estimated based on the distance from the origin in the space of the random variables. In the second step, the multi-scale system reliability method is used to compute the system reliability where the first-order reliability method (FORM) is initially used to evaluate the component failure probability (failure probability of one member), and then the probabilities of the identified failure modes and their statistical dependence are evaluated, which is called as the lower-scale reliability analysis. Since the system failure probability is comprised of the probabilities of the failure modes, a higher-scale reliability analysis is performed again based on the results of the lower-scale analyses, and the system failure probability is finally evaluated. The illustrative example demonstrates the results of the system reliability analysis of the rack storage facilities subjected to forklift impact loadings. The numerical efficiency and accuracy of the approach are compared with the Monte Carlo simulations. The results show that the proposed two-step approach is able to provide accurate reliability assessment as well as significant saving of computational time. The results of the identified failure modes additionally let us know the most-critical members and their failure sequence under the complicated configuration of the member connections.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.