Abstract
Biomimetic oxidation using synthetic iron-porphyrin (F20 TPPFeCl) as a catalyst eliminated a xylene moiety of the fungicide mandestrobin, uniformly labeled with carbon-14 at the benzyl ring, to produce the corresponding radiolabeled metabolite 1. This reaction mechanism was investigated by identifying chemical structures of intermediate 5 and p-xyloquinone derivatives 6 and 7, as by-products. Optimization of reaction factors based on the mechanism improved the yield of 1 from mandestrobin up to 87%. Finally, various carbon-14 labeled metabolites of mandestrobin were prepared from 1.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have