Abstract
The deposition of amyloid plaques resulting from the aggregation of amyloid-β (Aβ) peptides is closely related to Alzheimer's disease (AD). With the development of various therapeutic methods, the oxidative modification of Aβ has emerged as a fascinating noninvasive photo-therapeutic intervention for treating AD by altering the Aβ aggregation tendency. Herein, we report the photo-triggered inhibition of Aβ aggregation and cytotoxicity by utilizing polymer nanodots (Pdots) modified with rose bengal (RB), methylene blue (MB), and riboflavin (RF). Experimental results demonstrate that these functionalized Pdots manifest a superior suppression effect on Aβ aggregation under irradiation. This can be attributed to the formation of reactive oxygen species (ROS) (i.e., singlet oxygen (1O2)), resulting in the oxygenation of Aβ and the change of Aβ aggregation tendency. Especially, RB-Pdots manifest better biocompatibility and higher 1O2 productivity. In a word, this hybridized nanostructure will provide a promising platform for the noninvasive photo-therapeutic treatment of AD in the future.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.