Abstract

Aggregation of amyloid-β (Aβ) peptides is believed to play a key role in the mechanism of molecular pathogenesis of Alzheimer's disease (AD). To inhibit the aggregation and prevent AD, numerous compounds have been synthesized. A previous experimental study elucidated that a triazine derivative AA3E2 has anti-amyloidogenic ability, while a triazine derivative AA3D2 having a different substituent has no inhibitory effect. However, the reason for this remarkable difference in the ability cannot be explained by the chemical structures of these derivatives. In the present study, we present stable structures of the solvated complexes with Aβ and AA3E2/AA3D2 obtained by classical molecular mechanics method. The specific interactions between Aβ and AA3E2/AA3D2 in the complexes are investigated by ab initio fragment molecular orbital calculations. Based on the results obtained, we attempt to propose new potent inhibitors for the Aβ aggregation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.