Abstract

Sugarcane bagasse represents one of the best potential feedstocks for the production of second generation bioethanol. The most efficient method to produce fermentable sugars is by enzymatic hydrolysis, assisted by thermochemical pretreatments. Previous research was focused on conventional heating pretreatment and the pretreated biomass residue characteristics. In this work, microwave energy is applied to facilitate sodium hydroxide (NaOH) and sulphuric acid (H2SO4) pretreatments on sugarcane bagasse and the efficiency of sugar production was evaluated on the soluble sugars released during pretreatment. The results show that microwave assisted pretreatment was more efficient than conventional heating pretreatment and it gave rise to 4 times higher reducing sugar release by using 5.7 times less pretreatment time. It is highlighted that enrichment of xylose and glucose can be tuned by changing pretreatment media (NaOH/H2SO4) and holding time. SEM study shows significant delignification effect of NaOH pretreatment, suggesting a possible improved enzymatic hydrolysis process. However, severe acid conditions should be avoided (long holding time or high acid concentration) under microwave heating conditions. It led to biomass carbonization, reducing sugar production and forming ‘humins’. Overall, in comparison with conventional pretreatment, microwave assisted pretreatment removed significant amount of hemicellulose and lignin and led to high amount of sugar production during pretreatment process, suggesting microwave heating pretreatment is an effective and efficient pretreatment method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.