Abstract
A subgradient method is presented for solving general convex optimization problems, the main requirement being that a strictly feasible point is known. A feasible sequence of iterates is generated, which converges to within user-specified error of optimality. Feasibility is maintained with a line search at each iteration, avoiding the need for orthogonal projections onto the feasible region (an operation that limits practicality of traditional subgradient methods). Lipschitz continuity is not required, yet the algorithm is shown to possess a convergence rate analogous to rates for traditional methods, albeit with error measured relatively, whereas traditionally error has been absolute. The algorithm is derived using an elementary framework that can be utilized to design other such algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.