Abstract

The trade-off between gas permeance and filtration accuracy in SiC ceramic membranes has constrained their utilization in gas/solid filtration. Herein, a polyvinyl butyraldehyde (PVB) solution was introduced as a prefilling layer to impede membrane particles from penetrating the macroporous SiC support (average pore size: 23 μm). The PVB layer could be removed postsintering, thereby producing a ceramic membrane devoid of any intermediate layer, which showed great potential in enhancing the gas permeance. Initially, the PVB concentration was optimized to ensure membrane integrity and strong adhesion between the support and separation layer. Thereafter, suitable dispersants and drying conditions were investigated in detail. The resultant asymmetric SiC membranes fabricated under these optimized conditions had a thickness ranging between 50 and 60 μm. These membranes demonstrated exceptional gas permeance, varying from 71.1 to 178.1 m3 m−2 h−1 kPa−1 by tuning the membrane pore size from 1.02 to 3.03 μm. Additionally, the membranes achieved 99.94 % dust rejection for particles approximately 0.3 μm in size. When compared to traditional ceramic membranes with several intermediate layers, the prefilling approach employed herein circumvents the ceramic intermediate layer. This method resolves the mismatch between particle sizes of the ceramic support and the membrane layer, offering an effective strategy for developing high-permeance SiC membranes suited for gas/solid filtration applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.