Abstract
Spin injection from a diluted magnetic semiconductor quantum well (DMS-QW) into self-assembled quantum dots (QDs) of CdSe is demonstrated via LO-phonon-assisted resonant electron tunneling. The experimental evidence for the spin injection is clearly shown by time-resolved circularly polarized exciton photoluminescence (PL) with the polarization degree up to 40% in QDs. In addition, a type II transition with the lifetime of 3.5ns between electrons in the QDs and heavy holes in the DMS-QW is observed. These PL energies directly indicate that the electron tunneling is resonantly assisted by LO-phonon scattering, which realizes an efficient spin-injection process into QDs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.