7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
https://doi.org/10.1126/sciadv.abq4935
Copy DOIJournal: Science Advances | Publication Date: Oct 28, 2022 |
Citations: 18 | License type: cc-by-nc |
Upconverting infrared light into visible light via the triplet-triplet annihilation process in solid state is important for various applications including photovoltaics, photodetection, and bioimaging. Although inorganic semiconductors with broad absorption and negligible exchange energy loss have emerged as promising alternative to molecular sensitizers, currently, they have exclusively suffered from low efficiency and contained toxic elements in near-infrared (NIR)-to-visible upconversion. Here, we report an ultrathin bilayer film for NIR-to-visible upconversion based on atomically thin two-dimensional (2D) monolayer semiconductors. The atomic flatness and strong light absorption of 2D monolayer semiconductors enable ultrafast energy transfer and robust NIR-to-visible emission with a high upconversion quantum yield (1.1 ± 0.2%) at modest incident power (260 mW cm-2). Increasing layer thickness adversely quenches the upconversion emission, highlighting the 2D advantage. Considering the whole library of 2D semiconductors, the facile large-scale production and the ultrathin solid-state architecture open a new research field for solid-state upconversion applications.
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.