Abstract

An efficient micro-scale solar power management architecture for self-powered Internet-of-Things node is presented in this paper. The proposed architecture avoids the linear regulator and presents a complete on-chip switched capacitor based power converter in order to achieve higher end-to-end efficiency. Unlike traditional architectures, where the harvested energy processes twice, the proposed architecture processes the harvested energy only once before it reaches to the load circuit, irrespective of the ambient conditions. The system efficiency has been improved by ~12% over the traditional architecture. The entire power management system has been designed using 0.18-μm CMOS technology node, and the circuit simulations demonstrate that the proposed architectural changes bring in a system efficiency of 82.4% under different light conditions. In addition to that, a hardware setup is created using commercially available ICs and photovoltaic cells, to validate that the proposed power management system is practically realizable.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call