Abstract
Photocatalytic water splitting with solar light is one of the most promising technologies for solar hydrogen production. From a systematic point of view, whether it is photocatalyst and reaction system development or the reactor-related design, the essentials could be summarized as: photon transfer limitations and mass transfer limitations (in the case of liquid phase reactions). Optimization of these two issues are therefore given special attention throughout our study. In this review, the state of the art for the research of photocatalytic hydrogen production, both outcomes and challenges in this field, were briefly reviewed. Research progress of our lab, from fundamental study of photocatalyst preparation to reactor configuration and pilot level demonstration, were introduced, showing the complete process of our effort for this technology to be economic viable in the near future. Our systematic and continuous study in this field lead to the development of a Compound Parabolic Concentrator (CPC) based photocatalytic hydrogen production solar rector for the first time. We have demonstrated the feasibility for efficient photocatalytic hydrogen production under direct solar light. The exiting challenges and difficulties for this technology to proceed from successful laboratory photocatalysis set-up up to an industrially relevant scale are also proposed. These issues have been the object of our research and would also be the direction of our study in future.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.