Abstract

Next-Generation Sequencing (NGS) catalyzed breakthroughs across various scientific domains. Illumina's sequencing by synthesis method has long been essential for NGS but emerging technologies like Element Biosciences' sequencing by avidity (AVITI) represent a novel approach. It has been reported that AVITI offers improved signal-to-noise ratios and cost reductions. However, the method relies on rolling circle amplification which can be impacted by polymer size, raising questions about its efficacy sequencing small RNAs (sRNA) molecules including microRNAs (miRNAs), piwi-interacting RNAs (piRNAs), and others that are crucial regulators of gene expression and involved in various biological processes. In addition, capturing capped small RNAs (csRNA-seq) has emerged as a powerful method to map active or "nascent" RNA polymerase II transcription initiation in tissues and clinical samples. Here, we report a new protocol for seamlessly sequencing short DNA fragments on the AVITI and demonstrate that AVITI and Illumina sequencing technologies equivalently capture human, cattle (Bos taurus) and the bison (Bison bison) sRNA or csRNA sequencing libraries, augmenting the confidence in both approaches. Additionally, analysis of generated nascent transcription start sites (TSSs) data for cattle and bison revealed inaccuracies in their current genome annotations and highlighted the possibility and need to translate small RNA sequencing methodologies to livestock. Our accelerated and optimized protocol therefore bridges the advantages of AVITI sequencing and critical methods that rely on sequencing short DNA fragments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call