Abstract

Multicomponent quantum systems in strong interaction with their environment are receiving increasing attention due to their importance in a variety of contexts, ranging from solid state quantum information processing to the quantum dynamics of biomolecular aggregates. Unfortunately, these systems are difficult to simulate as the system-bath interactions cannot be treated perturbatively and standard approaches are invalid or inefficient. Here we combine the time-dependent density matrix renormalization group with techniques from the theory of orthogonal polynomials to provide an efficient method for simulating open quantum systems, including spin-boson models and their generalizations to multicomponent systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call