Abstract

SUMMARY We study the heteroscedastic partially linear model with an unspecified partial baseline component and a nonparametric variance function. An interesting finding is that the performance of a naive weighted version of the existing estimator could deteriorate when the smooth baseline component is badly estimated. To avoid this, we propose a family of consistent estimators and investigate their asymptotic properties. We show that the optimal semiparametric efficiency bound can be reached by a semiparametric kernel estimator in this family. Building upon our theoretical findings and heuristic arguments about the equivalence between kernel and spline smoothing, we conjecture that a weighted partial spline estimator could also be semiparametric efficient. Properties of the proposed estimators are presented through theoretical illustration and numerical simulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.