Abstract

In this paper we study semiparametric efficiency for the estimation of a finite-dimensional parameter defined by generalized moment conditions under the local instrumental variable assumptions. These parameters identify treatment effects on the set of compliers under the monotonicity assumption. The distributions of covariates, the treatment dummy, and the binary instrument are not specified in a parametric form, making the model semiparametric. We derive the semiparametric efficiency bounds for both conditional models and unconditional models. We also develop multistep semiparametric efficient estimators that achieve the semiparametric efficiency bound. To illustrate the efficiency gains from using the optimal semiparametric weights, we design a Monte Carlo study. It demonstrates that our semiparametric estimator performs well in nonlinear models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.