Abstract

Efficient second harmonic generation (SHG) in a nonlinear transparent conducting oxide (TCO) stripe waveguide that incorporates an organic polymer is theoretically investigated. The phase match condition between the fundamental photonic mode at the second harmonic and the fundamental long-range plasmonic mode at the fundamental frequency can be satisfied by dynamically or statically tuning the free carrier concentration of the TCO. The theoretically generated signal reaches its maximum up to 56.4 mW at a propagation distance of 34.8 μm for a pumping power of 1 W. The corresponding normalized conversion efficiency of the phase-matched SHG is up to 4.65×103 W−1 cm−2.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.