Abstract

Ultracompact devices engineered for second-harmonic generation (SHG) hold a significant promise across a diverse spectrum of applications. Here, we propose a merging bound state in the continuum at an off-Γ point in a reciprocal space with the anisotropic materials lithium niobate. Such a merging BIC yields a profound reduction in radiative loss and scattering losses while concurrently exhibiting a substantial enhancement in the quality factor. As a result, we achieved a noteworthy SHG efficiency (η = 3.7%) at the incident angle θ = 10° when the pump intensity I0 = 2 kW/cm2, outperforming alternative nanostructures designed for SHG. This research contributes valuable insights into the feasibility of metadevices founded on the principles of nanoengineering applied to traditional nonlinear crystals. Such advancements hold a considerable promise for the development of compact, high-performance SHG devices across a range of applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.