Abstract
We consider the problem of wavelength assignment in reconfigurable WDM networks with wavelength converters. We show that for N-node P-port bidirectional rings, a minimum number of /spl lceil/PN/4/spl rceil/ wavelengths are required to support all possible connected virtual topologies in a rearrangeably nonblocking fashion, and provide an algorithm that meets this bound using no more than /spl lceil/PN/2/spl rceil/ wavelength converters. This improves over the tight lower bound of /spl lceil/PN/3/spl rceil/ wavelengths required for such rings given in if no wavelength conversion is available. We extend this to the general P-port case where each node i may have a different number of ports P/sub i/, and show that no more than /spl lceil//spl sigma//sub i/P/sub i//4/spl rceil/+1 wavelengths are required. We then provide a second algorithm that uses more wavelengths yet requires significantly fewer converters. We also develop a method that allows the wavelength converters to be arbitrarily located at any node in the ring. This gives significant flexibility in the design of the networks. For example, all /spl lceil/PN/2/spl rceil/ converters can be collocated at a single hub node, or distributed evenly among the N nodes with min{/spl lceil/P/2/spl rceil/+1,P} converters at each node.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have