Abstract

In order to efficiently extract uranium from uranium-containing wastewater, a novel acid doped polypyrrole/carbon felt (PA-PPy/CF) electrode was prepared via a facile electrodeposition method. For this material, PA and PPy combined to form a stable chemical structure by a charge compensation mechanism. The electrochemical characterization results showed that PA-PPy can significantly accelerate the electrochemical reduction rate of uranium ions. Moreover, a double potential step technique (DPST) was applied to prevent water splitting and maintained the electrocatalytic reduction activity of the surface groups during the electrochemical adsorption process. The removal efficiency obtained by the DPST method was six times higher than that obtained by the conventional chemical adsorption. When the concentrations of uranyl nitrate were 10, 20, 50, and 100 mg/L, the removal efficiencies of uranium were 98.8%, 98.1%, 94.6%, and 93.7%, and the adsorption capacities of uranium were 164.7, 326.9, 788.5, and 1562.0 mg/g, respectively. This material also showed an excellent recycling performance and remarkable selectivity for uranium ions. This work may shed light on the development of removal system for uranium (VI).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.