Abstract

Pursuing high-efficiency adsorbents with high stability and ample porosity for environmental remediation has great practical significance but huge challenges still remain. Herein, porous carbons (PCs) were prepared by using covalent organic framework (COF) as self-template. The as-prepared PCs are of high specific surface area and pore volume, which are beneficial for contaminant capture. In contrast to virgin COF, the obtained PCs exhibited a better application potential for tetracycline (TC) removal from water. Notably, 87% of TC can be removed within 10 min and the kinetic data were consistent with the second-order kinetic model (R2 >0.998). Moreover, the adsorption isotherm conformed to the Langmuir adsorption model, and the calculated value of saturated adsorption capacity was 285 mg/g. It was speculated that the superior adsorption performance was due to the contribution of π-π stacking, hydrogen bonding and hydrophobic interactions. It is worth noting that the sample prepared from COF heat-treated at 1000°C, denoted as TpPa-1-1000, had good stability and reusability. Excitingly, TC in actual water samples can be efficiently removed by TpPa-1-1000. The results demonstrated that the strategy of utilizing COFs as the precursor for synthesis PC opens a new avenue to develop highly efficient adsorbents for removing pharmaceutical contaminant in wastewater.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.