Abstract
We report on the efficient removal of heavy metal ions from simulated wastewater with a nanostructured assembly. The nanoassembly was obtained via direct assembling the performed anisotropic layered double hydroxide nanocrystals (LDH-NCs) onto the surface of carbon nanospheres (labeled as LDH-NCs@CNs). It was found that the maximum adsorption capacity of the nanoassembly toward Cu(2+) was ∼ 19.93 mg g(-1) when the initial Cu(2+) concentration was 10.0 mg L(-1), displaying a high efficiency for the removal of heavy metal ions. The Freundlich adsorption isotherm was applicable to describe the removal processes. Kinetics of the Cu(2+) removal was found to follow pseudo-second-order rate equation. Furthermore, the as-prepared building unit of the assembly, including LDH-NCs, CNs, and the assembly, as well as Cu(2+)-adsorbed assembly, were carefully examined by transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), nitrogen sorption measurements, and X-ray photoelectron spectroscopy (XPS). Based on the characterization results, a possible mechanism of Cu(2+) removal with the assembly of LDH-NCs@CNs was proposed. Comparison experiments show that the adsorption capacity of the resulting LDH-NCs@CNs assembly was much higher than its any building unit alone (CNs or LDH-NCs), exhibiting the deliberation of the assembly on water decontamination. This work provides a very efficient, fast and convenient approach for exploring promising nanoassembly materials for water treatment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.