Abstract

How to construct efficient red-emitting thermally activated delayed fluorescence (TADF) materials is a challenging task in the field of organic light-emitting diodes (OLEDs). Herein, an electron acceptor moiety, 3,6-DCNB-DPPZ, with high rigidity and strong acceptor strength was designed by introducing two cyanobenzene groups into the 3,6-positions of a dipyrido[3,2-a:2′,3′-c]phenazine unit. A red-emitting compound, 3,6_R, has been designed and synthesized by combining the rigid acceptor unit with two triphenylamine donors. Due to high molecular rigidity and strong intramolecular charge transfer characteristic in donor–acceptor–donor skeleton, 3,6_R exhibited a red emission with a high photoluminescence quantum yield of 86% and distinct TADF nature with short delayed fluorescence lifetime of about 1 microsecond. Accordingly, the OLED using 3,6_R as the guest emitter gained a high external quantum efficiency of 12.0% in the red region with an electroluminescence peak of 619 nm and favorable Commission Internationale de l’Eclairage coordinates of (0.62, 0.38).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.