Abstract

Loading functions into quantum computers represents an essential step in several quantum algorithms, such as quantum partial differential equation solvers. Therefore, the inefficiency of this process leads to a major bottleneck for the application of these algorithms. Here, we present and compare two efficient methods for the amplitude encoding of real polynomial functions on n qubits. This case holds special relevance, as any continuous function on a closed interval can be uniformly approximated with arbitrary precision by a polynomial function. The first approach relies on the matrix product state representation (MPS). We study and benchmark the approximations of the target state when the bond dimension is assumed to be small. The second algorithm combines two subroutines. Initially we encode the linear function into the quantum registers either via its MPS or with a shallow sequence of multi-controlled gates that loads the linear function's Hadamard-Walsh series, and we explore how truncating the Hadamard-Walsh series of the linear function affects the final fidelity. Applying the inverse discrete Hadamard-Walsh transform converts the state encoding the series coefficients into an amplitude encoding of the linear function. Thus, we use this construction as a building block to achieve an exact block encoding of the amplitudes corresponding to the linear function on k0 qubits and apply the quantum singular value transformation that implements a polynomial transformation to the block encoding of the amplitudes. This unitary together with the Amplitude Amplification algorithm will enable us to prepare the quantum state that encodes the polynomial function on k0 qubits. Finally we pad n−k0 qubits to generate an approximated encoding of the polynomial on n qubits, analyzing the error depending on k0. In this regard, our methodology proposes a method to improve the state-of-the-art complexity by introducing controllable errors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.