Abstract

Quantum Krylov subspace diagonalization (QKSD) is an emerging method used in place of quantum phase estimation in the early fault-tolerant era, where limited quantum circuit depth is available. In contrast to the classical Krylov subspace diagonalization (KSD) or the Lanczos method, QKSD exploits the quantum computer to efficiently estimate the eigenvalues of large-size Hamiltonians through a faster Krylov projection. However, unlike classical KSD, which is solely concerned with machine precision, QKSD is inherently accompanied by errors originating from a finite number of samples. Moreover, due to difficulty establishing an artificial orthogonal basis, ill-conditioning problems are often encountered, rendering the solution vulnerable to noise. In this work, we present a nonasymptotic theoretical framework to assess the relationship between sampling noise and its effects on eigenvalues. We also propose an optimal solution to cope with large condition numbers by eliminating the ill-conditioned bases. Numerical simulations of the one-dimensional Hubbard model demonstrate that the error bound of finite samplings accurately predicts the experimental errors in well-conditioned regions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.