Abstract

Cordycepin, a nucleoside compound with a variety of biological activities, has been extensively applied in the nutraceutical and pharmaceutical industries. The advancement of microbial cell factories using agro-industrial residues provides a sustainable pathway for cordycepin biosynthesis. Herein, the cordycepin production was enhanced by the modification of glycolysis and pentose phosphate pathway in engineered Yarrowia lipolytica. Then, cordycepin production based on economical and renewable substrates (sugarcane molasses, waste spent yeast, and diammonium hydrogen phosphate) was analyzed. Furthermore, the effects of C/N molar ratio and initial pH on cordycepin production were evaluated. Results indicated that the maximum cordycepin productivity of 656.27 mg/L/d (72 h) and cordycepin titer was 2286.04 mg/L (120 h) by engineered Y. lipolytica in the optimized medium, respectively. The cordycepin productivity in the optimized medium was increased by 28.81% compared with the original medium. This research establishes a promising way for efficient cordycepin production from agro-industrial residues.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call